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VaR 
 Attempt to provide a single number that summarizes the total 

risk in a portfolio. 

 What loss level is such that we are X% confident it will not be 
exceeded in N business days?” 

 Examples: VaR and regulation 
» Regulators base the capital they require  banks to keep on VaR 

» The market-risk capital is k times the 10-day 99% VaR where k is at least 
3.0 

» Under Basel II capital for credit risk and operational risk is based on a one-
year 99.9% VaR 

 Is it the only measure we have? 
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Comparison of models 

Delta-Normal 

(or var-covar) 

Historical Simulation MonteCarlo 

Simulation 

Valuation Linear (Local) Full Full 

Distribution 

 Shape 

 Extreme events 

 

 Normal 

 Low probability 

 

 Actual 

 In recent data 

 

 General 

 Possible 

Implementation 

 Ease of computation 

 Communicability 

 VaR precision 

 

 Major pitfalls 

 

 

 Yes 

 Easy 

 Excellent 

 

 Non-linearities, 

 fat tails 

 

 Intermediate 

 Easy 

 Poor with short 

 window 

 Time variation in  risk, 

unusual events 

 

 No 

 Difficult 

 Good with many 

iterations 

 Model risk 

Inspired from Jorion, Financial Risk Manager Handbook 

3 Prof H. Pirotte 



Alternative Measures of Risk 
 Using the entire distribution 

 Report a range of VaRs for increasing confidence levels 

 The conditional VaR 
 Expected Loss when it is greater than VaR 

 
 
 

 When the value at risk measure falls into a probability mass (i.e., there exists 
some  > 0 such that Vc+ = Vc ), we use a more general formulation. 
 

  
 
 
 
 

 
 expected shortfall 
 tail conditional expectation / conditional loss 
 expected tail loss / tail risk 
 conditional tail expectation (CTE) 
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Alternative Measures of Risk (cont’d) 
 Iterated CTE 

» If CTE has to be revised in the future, prior to the maturity, you may have to 
provide for more cash if original CTE is upgraded… 

» ICTE proposes to prospectively revaluate the CTE at the future date and aggregate 
those depending on the probability of each outcome at that future date. 

 

 The standard deviation 

» Covers all observations 

» Is the most efficient measure of dispersion if we stand with normal or Student’s t. 

» Var-covar: VaR inherits all properties of standard deviations 

» But symmetrical and cannot distinguish large losses from large gains 

» VaR from SD requires distributional assumption not necessarily valid 

 The semi-standard deviation 

 

  
2

1

0,Min
1

1







n

i

i

L

L xx
n

s

5 Prof H. Pirotte 



Expected shortfall 
 Expected shortfall is the expected loss given that the loss is greater than the 

VaR level (also called C-VaR and Tail Loss) 

 Two portfolios with the same VaR can have very different expected shortfalls 

VaR 

VaR 

Source: John Hull, Risk Management and Financial Institutions.  
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An example 
 Case application 

Stemming from: Boyle, Hardy & Vorst (2005), “Life after VaR”, The Journal of Derivatives. 
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Coherence of Risk Measures 
 Until now: 

» VaR as a downside risk 

» VaR is seen as a quantile 

 But: 

» VaR may hide different distribution patterns 

» VaR may be inconsistent for some desirable properties of risk measures 

 

 Desirable properties of a risk measure 

» Monotonicity 

» Translation invariance 

» Homogeneity 

» Subadditivity 

 A risk measure can be characterized by the weights it assigns to quantiles of 
the loss distribution... 

)()( 2121 XRMXRMXXif 

kXRMkXRM  )()(

)()( XRMbbXRM 

)()()( 2121 XRMXRMXXRM 

Source: Artzner, Delbaen, Eber & Heath (1999), 
“Coherent Measures of Risk”, Mathematical Finance. 
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Some ideas... 
 The expected shortfall 

» Is coherent 

» Gives equal weight to quantiles > qth quantile and 0 to all quantiles < qth quantile 

» Is less simple and harder to back test 

 We can also define a spectral risk measure by making other assumptions 

» Coherent (satisfies subadditivity) if the weight assigned to qth quantile (wq ) is a 
nondecreasing function of q. 

» Exponential spectral risk measure 

 (1 ) /q

qw e  
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Some parameterizations... 
 Sigma, time horizon and VaR 

 

» Ex: Regulatory capital for market risks:  

 Autocorrelation 

» Changes in portfolio values are not totally independent 

» Assume variance of Pt  to be 2 for all i, and the correlation between 
Pt and Pt-1  (first-order autocorrelation) to be , then 

 

» Since the correlation between Pt and Pt-j  is then j, we have that 

 

 Confidence intervals 

» Since it is difficult to estimate VaRs with high confidence intervals directly 

 We can use a first confidence interval 

 Then “extrapolate” through the change of confidence interval (but we depend on an 
assumption on the tails of the distribution) 
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Backtesting 
 Backtesting a VaR calculation methodology involves looking at how 

often exceptions (loss > VaR ) occur: 
» If more than (1  c)  underestimations of VaR 
» If less than (1  c)  overestimations of VaR 

 Alternatives: 
» compare VaR with actual change in portfolio value and/or 
» compare VaR with change in portfolio value assuming no change in portfolio 

composition 

 Suppose that the theoretical probability of an exception is p (=1  c). 
The probability of m or more exceptions in n days is 

 

 Kupiec two-tailed test 
» If the probability of an exception under the VaR model is p and m exceptions 

are observed in n trials, then 
 

» should have a 2 distribution with 1 degree of freedom. 
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Backtesting – Basle Committee rules 
 If number of exceptions in previous 250 days is less than 5 the 

regulatory multiplier, k, is set at 3 

 If number of exceptions is 5, 6, 7, 8 and 9 supervisors may set k 
equal to 3.4, 3.5, 3.65, 3.75, and 3.85, respectively 

 If number of exceptions is 10 or more k is set equal to 4 
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Bunching & Stress-testing 
 Bunching 

» Bunching occurs when exceptions are not evenly spread throughout the 
backtesting period 

» Statistical tests for bunching have been developed 
 Test for autocorrelation (see slides on “Volatility”) 
 Test statistic suggested by Christofferson 

 
 

 uij is the #obs where we go from a day in state i to a day in state j. State 0 is a 
day without exception and state 1 is a day with exception. 

 

 

 Stress-testing 
» Considers how portfolio would perform under extreme market moves 
» Scenarios can be taken from historical data (e.g. assume all market 

variable move by the same percentage as they did on some day in the 
past) 

» Alternatively they can be generated by senior management 
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Overview 
 Model risk: models may be inappropriate because: 

» They do not reflect the true statistical behavior of the data 

 For normal market conditions 

 For extreme events 

» They can’t be used consistently for special instruments 

 Liquidity risk 

 And after all, is VaR what you need? 
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Specific issues 
 Fat tails 

» Student « t » distributions 

» Jump processes  Poisson process 

 Time variation in risk: based on econometric studies 
» ARCH and GARCH models 

» Exponentially Weigthed Moving Average (EWMA) forecast 

» Regime switching 

» Dynamic correlations 
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