

Financial Risk Management and Governance **Beyond VaR**

VaR

- Attempt to provide a single number that summarizes the total risk in a portfolio.
- What loss level is such that we are *X*% confident it will not be Stand exceeded in *N* business days?"
- Examples: VaR and regulation

Solvay Brussels School Economics & Management

- » Regulators base the capital they require banks to keep on
- » The market-risk capital is *k* times the 10-day 99% VaR where *k* is at least 3.0
- » Under Basel II capital for credit risk and operational risk is based on a oneyear 99.9% VaR
- Is it the only measure we have?

VAK Value lent on the look

Comparison of models

Inspired from Jorion, *Financial Risk Manager Handbook*

Alternative Measures of Risk

- Using the entire distribution
	- Report a range of VaRs for increasing confidence levels sutcomes polar (outcan)
- The conditional VaR CULR
	- \checkmark Expected Loss when it is greater than VaR

VaR VaR VaR c c c E X X VaR x f x dx f x dx x f x dx p ^c

 \checkmark When the value at risk measure falls into a probability mass (i.e., there exists some $\epsilon > 0$ such that $V_{c+\epsilon} = V_c$), we use a more general formulation. * = max $\{\beta: V_c = V_\beta\}$ When the value at risk me
some $\varepsilon > 0$ such that $V_{c+\varepsilon}$ =
Find $\beta^* = \max\{\beta : V_c = V_\beta\}$ he value at risk measur
> 0 such that $V_{\textrm{c+}e}$ = $V_{\textrm{c}}$)
= $\max\left\{\beta:V_{c}=V_{\beta}\right\}$

$$
\mathcal{L} = \int_{-\infty}^{\infty} E[X|X \leq VaR_{c}] = \int_{-\infty}^{VaR_{c}} x f(x) dx / \int_{-\infty}^{VaR_{c}} f(x) dx
$$
\n
$$
E[X|X \leq VaR_{c}] = \int_{-\infty}^{VaR_{c}} x f(x) dx / \int_{-\infty}^{VaR_{c}} f(x) dx
$$
\n
$$
= \int_{-\infty}^{VaR_{c}} x f(x) dx / \int_{-\infty}^{VaR_{c}} f(x) dx
$$
\n
$$
= \int_{-\infty}^{VaR_{c}} x f(x) dx
$$
\n
$$
= \int_{-\infty}^{VaR_{c}} x f(x) dx
$$
\n
$$
= \int_{-\infty}^{VaR_{c}} x f(x) dx
$$
\n
$$
= \int_{-\infty}^{VaR} x f(x) dx
$$
\n
$$
= \int_{-\infty}^{VaR_{c}} x f(x) dx
$$
\n
$$
= \int_{-\infty}^{VaR_{c}}
$$

p

- expected shortfall
- tail conditional expectation / conditional loss
- expected tail loss / tail risk
-

Alternative Measures of Risk (cont'd)

Iterated CTE

- » If CTE has to be revised in the future, prior to the maturity, you may have to provide for more cash if original CTE is upgraded…
- » ICTE proposes to prospectively revaluate the CTE at the future date and aggregate those depending on the probability of each outcome at that future date.

CTE

- The standard deviation
	- » Covers all observations
	- » Is the most efficient measure of dispersion if we stand with normal or Student's t.
	- » Var-covar: VaR inherits all properties of standard deviations
	- » But symmetrical and cannot distinguish large losses from large gains
	- » VaR from SD requires distributional assumption not necessarily valid
- The semi-standard deviation

$$
f\left(\overbrace{\cdot\cdot\cdot\cdot}^{2}\right)+\leftarrow f\bigodot s_{L}=\sqrt{\frac{1}{n_{L}-1}\sum_{i=1}^{n}\left[\mathrm{Min}(x_{i},0)-\bar{x}\right]^{2}}
$$

Expected shortfall

- Expected shortfall is the expected loss given that the loss is greater than the VaR level (also called C-VaR and Tail Loss)
- Two portfolios with the same VaR can have very different expected shortfalls

Source: John Hull, *Risk Management and Financial Institutions.*

An example

Case application

Stemming from: Boyle, Hardy & Vorst (2005), "Life after VaR", *The Journal of Derivatives*.

Coherence of Risk Measures

- Until now:
	- » VaR as a downside risk
	- » VaR is seen as a quantile
- But:
	- » VaR may hide different distribution patterns
	- » VaR may be inconsistent for some desirable properties of risk measures
- Desirable properties of a risk measure
	- **»** Monotonicity if $X_1 \leq X_2 \rightarrow RM(X_1) \geq RM(X_2)$
	- **»** Translation invariance $RM(X + k) = RM(X) k$
	- **»** Homogeneity $RM(bX) = bRM(X)$
	- $M(X_1 + X_2) \le RM(X_1) + RM(X_2)$
- A risk measure can be characterized by the weights it assigns to quantiles of the loss distribution...

Source: Artzner, Delbaen, Eber & Heath (1999), "Coherent Measures of Risk", *Mathematical Finance*.

Some ideas...

The expected shortfall

- $\frac{1}{2}$ Is coherent $\frac{1}{2}$
- **»** Gives equal weight to quantiles > q^{th} quantile and 0 to all quantiles < q^{th} quantile
- **»** Is less simple and harder to back test $\sqrt{}$
- We can also define a *spectral risk measure* by making other assumptions
	- **»** Coherent (satisfies subadditivity) if the weight assigned to q^{th} quantile (w_q) is a nondecreasing function of *q*.
	- » Exponential spectral risk measure

$$
w_q = e^{-(1-q)/\gamma}
$$

assignif a neighton scheme
(à jenalization scheme) to
the sortitution of values

Some parameterizations...

Sigma, time horizon and VaR

izon and VaR

\n
$$
N
$$
-day VaR = 1-day VaR × \sqrt{N} = 1-day $\sigma N^{-1}(c)$

- igma, time horizon and VaR
 N -day VaR = 1-day VaR $\times \sqrt{N} = 1$ -day $\sigma N^{-1}(c)$
 \triangleright Ex: Regulatory capital for market risks: $3 \times \sqrt{10} \times 1$ -day VaR (99%)
- Autocorrelation
	- » Changes in portfolio values are not totally independent
	- **»** Assume variance of ΔP_t to be σ^2 for all i, and the correlation between ΔP_{t} and $\Delta P_{\text{t-1}}$ (first-order autocorrelation) to be ρ , then $(\Delta P_t + \Delta P_{t-1}) = (2 + 2\rho)\sigma^2$ t-order autocorrelation) to be ρ
var $\left(\Delta P_{t} \,+\, \Delta P_{t\text{-}1}\right)$ = $\left(2\!+\!\!\left(2\rho\right)\!\sigma^2\right)$
	- **»** Since the correlation between ΔP_t and ΔP_{t-j} is then ρ' , we have that ce the correlation between ΔP_t and ΔP_{t-j} is then ρ , we have that
 $\left(\sum_{j=1}^N \Delta P_{t-j}\right) = \sigma^2 \left[N + 2(N-1)\rho + 2(N-2)\rho^2 + 2(N-3)\rho^3 + ... + 2\rho^{N-1}\right]$ ΔP_t and ΔP_{t-1} (first-order autocorrelation) to be ρ , then
 $var(\Delta P_t + \Delta P_{t-1}) = (2 + 2\rho)\sigma^2$

	Since the correlation between ΔP_t and ΔP_{t-j} is then ρ , we have that
 $var\left(\sum_{j=1}^N \Delta P_{t-j}\right) = \sigma^2 \left[N + 2(N-1)\rho + 2(N$ $t=1$ Δt t and ΔP_{t-1} (first-order autocorrelation) to be ρ , then
 $var(\Delta P_t + \Delta P_{t-1}) = (2 + 2\rho)\sigma^2$

	e the correlation between ΔP_t and ΔP_{t-1} is then ρ , we have that
 $\sum_{j=1}^N \Delta P_{t-j}$ $= \sigma^2 \left[N + 2(N-1)\rho + 2(N-2)\rho^2 + 2(N-$
- Confidence intervals
	- » Since it is difficult to estimate VaRs with high confidence intervals directly
		- \checkmark We can use a first confidence interval
		- \checkmark Then "extrapolate" through the change of confidence interval (but we depend on an assumption on the tails of the distribution)

Backtesting

- Backtesting a VaR calculation methodology involves looking at how often exceptions (loss > VaR) occur:
	- θ If more than $(1 c) \rightarrow$ underestimations of VaR
	- θ If less than $(1 c) \rightarrow$ overestimations of VaR
- Alternatives:

Solvay Brussels School Economics & Management

- » compare VaR with actual change in portfolio value and/or
- » compare VaR with change in portfolio value assuming no change in portfolio composition
- Suppose that the theoretical probability of an exception is $p (=1-c)$. The probability of *m* or more exceptions in *n* days is

$$
\sum_{k=m}^{n} \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}
$$

- Kupiec two-tailed test
- » If the probability of an exception under the VaR model is *p* and *m* exceptions are observed in *n* trials, then **1 test**
 y of an exception under the VaR model is p and m exc

n trials, then $\begin{bmatrix} -2\ln\left[(1-p)^{n-m}p^m\right] + 2\ln\left[(1-m/n)^{n-m}\right]^2 \end{bmatrix}$

² distribution with 1 degree of freedom. under the VaR model is p and m exceptions
 $2\ln \left[\left(1-p\right)^{n-m}p^m\right]+2\ln \left[\left(1-m/n\right)^{n-m}\left(m/n\right)\right]$ are model is p and m exceptions
 $\begin{bmatrix} n^{-m} & n^m \end{bmatrix} + 2 \ln \left[\left(1 - m/n \right)^{n-m} \left(m/n \right)^m \right]$ $\frac{p}{p} \frac{\text{VaR} \text{ model is } p \text{ and } m \text{ exception}}{p \binom{p^{n-m}}{n} p^m \left] + 2 \ln \left[\left(1 - m/n \right)^{n-m} \left(m/n \right)^n \right] \right]$ aR model is p and m excepti $\left[\frac{-m}{n^m}\right]_+ \frac{1}{2 \ln \left[(1-m/n)^{n-m}\right]}$ a under the VaR model is *p* and *m* exceptions
-2ln $\left[\left(1-p\right)^{n-m} p^m\right]+2\ln\left[\left(1-m/n\right)^{n-m} \left(m/n\right)^m\right]$
	- λ should have a χ^2 distribution with 1 degree of freedom.

Backtesting – Basle Committee rules

- If number of exceptions in previous 250 days is less than 5 the regulatory multiplier, *k*, is set at 3
- If number of exceptions is 5, 6, 7, 8 and 9 supervisors may set k equal to 3.4, 3.5, 3.65, 3.75, and 3.85, respectively
- If number of exceptions is 10 or more *k* is set equal to 4

 $\overline{1}$

Bunching & Stress-testing

Bunching

- » Bunching occurs when exceptions are not evenly spread throughout the backtesting period
- » Statistical tests for bunching have been developed
	- Test for autocorrelation (see slides on "Volatility")
	-

Caefficient tests for purchasing have been developed

\n• Test for autocorrelation (see slides on "Volatility")

\n• Test statistic suggested by Christofferson

\n
$$
-2\ln\left[\left(1-\pi\right)^{u_{00}+u_{10}}\pi^{u_{01}+u_{11}}\right]+2\ln\left[\left(1-\pi_{01}\right)^{u_{00}}\pi_{01}^{u_{01}}\left(1-\pi_{11}\right)^{u_{10}}\pi_{11}^{u_{11}}\right]\left[\pi_{11}^{2}\right]
$$
\n• The fields when we go figure a design into a day in state, it is to give a state, i. State 0 is a

 u_{ij} is the #obs where we go from a day in state i to a day in state j. State 0 is a d ay without exception and state 1 is a day with exception. $u_{01} + u$ 552 $dd 4$

 $\frac{01 + u_{11}}{1}$ $u_{00} + u_{01} + u_{10} + u_{11}$

 $\tau_{01} = \frac{u_{01}}{u_{11} + u_{11}}, \ \pi_{11} = \frac{u_{11}}{u_{11}}$

 $\pi = \frac{u_{01} + u_{11}}{u_{00} + u_{01} + u_{10} + u_{11}}$

 $\pi_{01} = \frac{u_{01}}{u_{01}}, \ \pi_{11} = \frac{u_{01}}{u_{01}}$

 $u_{00} + u_{01}$ $u_{10} + u_{11}$

 $\frac{u_{01}}{u_{01}}, \ \pi_{11} = \frac{u_{11}}{u_{10} + u_{11}}$

 $\frac{u_{01}}{u_{01}}, \pi_{11} = \frac{u}{u_{01}}$

 $\frac{u_{01}}{u_{00}+u_{01}}$, $\pi_{11} = \frac{u_{11}}{u_{10}+u_{11}}$

Stress-testing

- $\frac{1}{\lambda}$ » Considers how portfolio would perform under extreme market moves
- » Scenarios can be taken from historical data (e.g. assume all market variable move by the same percentage as they did on some day in the past) $\frac{-2\ln[(1-\pi)^{n_0\pi u_{10}}\pi^{u_{01}+u_{11}}]+2\ln[(1-\pi_{01})^{u_{00}}\pi_{01}^{u_{01}}(1-\pi_{11})^{u_{10}}\pi_{11}]}{u_{ij}$ is the #obs where we go from a day in state i to a day in state day without exception and state 1 is a day with exception.
 $\$
-

)verview

Model risk: models may be inappropriate because:

- » They do not reflect the true statistical behavior of the data
	- \checkmark For normal market conditions
	- \checkmark For extreme events
- » They can't be used consistently for special instruments
- Liquidity risk
- And after all, is VaR what you need?

Specific issues

- Fat tails
	- » Student « t » distributions
	- \rightarrow Jump processes \rightarrow Poisson process
- Time variation in risk: based on econometric studies
	- » ARCH and GARCH models
	- » Exponentially Weigthed Moving Average (EWMA) forecast
	- » Regime switching
	- » Dynamic correlations